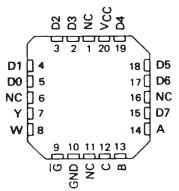
SN54251, SN54LS251 SN54S251, SN74251, SN74LS251, (TIM9905), SN74S251 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

- Three-State Versions of '151, 'LS151, 'S151
- Three-State Outputs Interface Directly with System Bus
- Perform Parallel-to-Serial Conversion
- Permit Multiplexing from N-lines to One Line
- Complementary Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL Circuits

TYPE	MAX NO. OF COMMON OUTPUTS	TYPICAL AVG PROP DELAY TIME (D TO Y)	TYPICAL POWER DISSIPATION
SN54251	49	17 ns	250 mW
SN74251	129	17 ns	250 mW
SN54LS251	49	17 ns	35 mW
SN74LS251	129	17 ns	35 mW
SN54S251	39	8 ns	275 mW
SN74S251	129	8 ns	275 mW

description


These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources and feature a strobe-controlled threestate output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the 'average output disable time is shorter than the average output enable time. The SN54251 and SN74251 have output clamp diodes to attenuate reflections on the bus line. SN54251, SN54LS251, SN54S251...J OR W PACKAGE SN74251...N PACKAGE SN74LS251, SN74S251...D OR N PACKAGE (TOP VIEW)

D3 [] D2 [] D1 [] D0 Y [] GND [] GND []	1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	V _{CC} D4 D5 D6 D7 A B C

SN54LS251, SN54S251 . . . FK PACKAGE

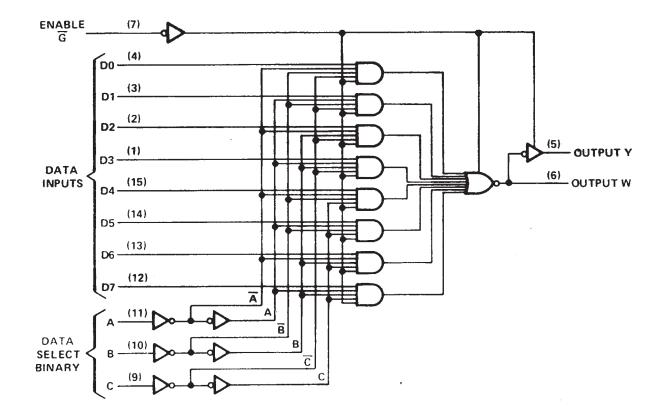
(TOP VIEW)

NC - No internal connection

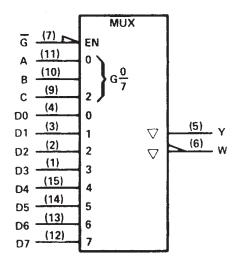
FU	INC.	TION	TAB	LE

	11	ουτ	PUTS		
SELECT			ENABLE		
С	8	A	ច	•	W
х	х	х	н	z	Z
L.	L	L	L	DO	DO
L	L	н	L	D1	Dī
L ¹	н	L	L	D2	D2
L	н	н	L	D3	D3
н	L	L	ι	D4	D4
н	L	н] ι	05	D5
н	н	L	ι	D6	D6
н	н	н	L	07	D7

H = high logic level, L = tow togic level X = irrelevant, Z = high impedance (off)


D0, D1 . . . D7 = the level of the respective D input

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SN54251, SN54LS251 SN54S251, SN74251, SN74LS251, (TIM9905), SN74S251 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

logic diagram (positive logic)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

SN54251 SN74251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Off-state output voltage	
Operating free-air temperature range: SN54251	-55° C to 125° C
SN74251	\cdots 0° C to 70° C
Storage temperature range	-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54251					UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-5.2	mA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_I = -12 \text{ mA}$			-1.5	V
Vон	High-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, I_{OH} = MAX$	2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4	v
loz	Off-state (high-impedance-state) output current	$V_{CC} = MAX$, $V_O = 2.4 V$ $V_{IH} = 2 V$ $V_O = 0.4 V$			40 -40	μА
vo	Output clamp voltage	V _{CC} = MAX, I _O = -12 m V _{IH} = 4.5 V I _O = 12 mA		V	1.5 CC+1.5	v
Ϊį	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1	mA
hн	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V			40	μA
41	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-18		-55	mA
ICC	Supply current	V _{CC} = MAX, All inputs at 4.5 All outputs open	V,	38	62	mA

[†]For conditions shown as M1N or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§Not more than one output should be shorted at a time.

SN54251 SN74251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

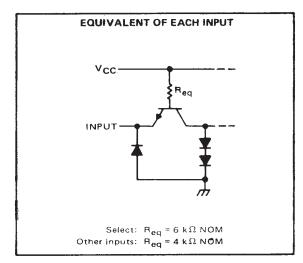
PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT	
^t PLH	A, B, or C	· Y			29	45		
^t PHL	(4 levels)				28	45	ns	
<u>ም</u> ርዘ	A, B, or C	w	-		20	33	ns	
^t ΡHL	(3 levels)				21	33] ""	
ሞLH	Any D	Y CL = 50 pF, RL = 400 Ω, W See Note 2	C 50 - 5	C: - 50 - 5		17	28	ns
ዋዘL				18	28	115		
tPLH	Any D		1		10	15	ns	
ΦHL		1	See Note 2		9	15	1 ¹¹³	
^t PZH	ē .	Y			17	27		
^t PZL	G	T T			26	40	ns	
tPZH	Ĝ	w			17	27		
tPZL	9	**			24	40	ns	
, tPHZ	Ğ	Y	Cլ = 5 pF,		5	8	ns	
^t PLZ					15	23		
tPHZ	G	w	- RL = 400 Ω, See Note 2		5	8		
tPLZ	6	44	See Note 2		15	23	ns	

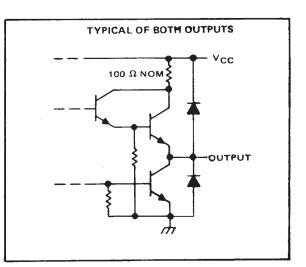
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

[†]tPLH = Propagation delay time, low-to-high-level output

tPHL = Propagation delay time, high-to-low-level output

tPZH = Output enable time to high level


tpzL = Output enable time to low level


tPHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

SN54LS251 SN74LS251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 Input voltage 7	
Off-state output voltage	5 V
Operating free-air temperature range: SN54LS251	°C
Storage temperature range	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	SN54LS251			SN74LS251			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
ЮН	High-level output current			- 1			- 2.6	mA	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEAT OON	DITIONOT		S	N54LS2	51	S	51	UNIT	
PARAMETER		TEST CON	TEST CONDITIONS [†]			TYP ‡	MAX	MIN	TYP‡	MAX	
VIK	V _{CC} = MIN,	I _I = - 18 mA					- 1.5			- 1.5	V
v _{он}	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	VIL = MAX		2.4	3.4		2.4	3.1		v
V	V _{CC} = MIN,	V _{1H} = 2 V,		lOL = 4 mA	1	0.25	0.4	1	. 0.25	0.4	v
VOL	VIL = MAX			10L = 8 mA					0.35	0.5	ľ
1	VMAX	N = 2 N		V _O ≠ 2.7 V			20			20	μA
loz	V _{CC} = MAX,	V[H - 2 V		V _O = 0.4 V			20			- 20	μm
4	$V_{CC} = MAX,$	V ₁ = 7 V					0.1			0.1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V					20			20	μA
L. Enable G	V _{CC} = MAX,	$\lambda = 0.4$					- 0.2			- 0.2	mA
IL All other	VCC - MAA,	V] = 0.4					- 0.4			- 0.4	
IOS§	V _{CC} = MAX				- 30		- 130	- 30		- 130	mA
				Condition A		6.1	10		6.1	10	mA
'cc	V _{CC} ≖ MAX,	See Note 3		Condition B		7.1	12		7.1	12	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

So t more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: I_{CC} is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:

A. Enable grounded.

B. Strobe at 4.5 V.

SN54LS251 SN74LS251, (TIM9905), DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

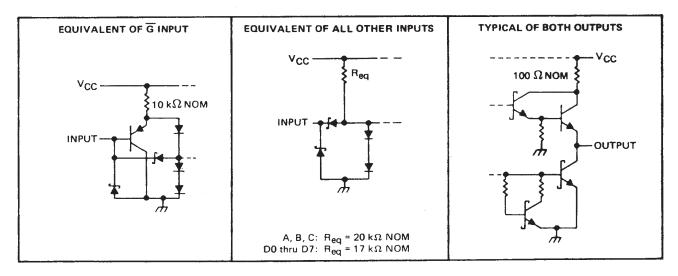
PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	A, B, or C	Y		29	45	
tPHL .	(4 levels)	T		28	45	ns
^t PLH	A, B, or C	w		20.	33	
tPHL.	(3 levels)			21	33	ns
<u>ም</u> ርዘ	Any D	Y	$C_L = 15 \text{ pF},$ $R_L = 2 \text{ k}\Omega,$	17	28	
ΦΗL				18	28	ns
^t ዎLH	Any D	w		10	15	ns
tPHL]. (iii) (iii)		See Note 2	9	15	115
^t PZH	G	Y		30	45	ns
tPZL]			26	40	
tPZH	G	w		17	27	ns
^t PZL	1		C _L = 5 pF, R _L = 2 kΩ, See Note 2	24	40	1 115
^t PHZ	Ğ	Y		30	45	ns
^t PLZ				15	25	1 113
tPHZ	Ğ	w		37	55	ns
^t PLZ	Ī			15	25	

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

[†]tp_{LH} = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = Output enable time to high level


tpZL = Output enable time to low level

tPHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

SN54S251 SN74S251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .									•							7 V
Input voltage				 	 •				•	•	•	•	•			5.5 V
Off-state output voltage				 •		•				•		•			•	5.5 V
Operating free-air temperature range:	SN54S251	•								-			-5	5°C	to	125°C
· · · · · · · · · · · · · · · · · · ·	SN74S251			 		•							•	0°	C t	o 70°C
Storage temperature range			• •				•		•	•			-6	5°C	to:	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	S	N54S25	51	5			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH		_	-2			-6.5	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TES	T CONDITIONS	•	MIN	TYP [‡]	MAX	UNIT
⊻ін	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	V
Viк	Input clamp voltage	V _{CC} = MIN,	1	= −18 mA				-1.2	V
N		V _{CC} = MIN,	VI	H = 2 V,	SN545'	2.4	3.4		v
VOH	High-level output voltage	V _{IL} = 0.8 V,	10	H = MAX	SN745'	2.4	3.2		Ň
		V _{CC} = MIN,	VI	_H = 2 V,				0.5	v
VOL	Low-level output voltage	V _{1L} = 0.8 V,	10	L = 20 mA				0.5	v
		V _{CC} = MAX,		Vo = 2.4 V	*	1		50	
IOZ	Off-state (high-impedance-state) output current	V _{IH} = 2 V		V _O = 0.5 V	•	1		-50	μA
4	Input current at maximum input voltage	V _{CC} = MAX,	VI	= 5.5 V		1		1	mA
Чн	High-level input current	V _{CC} = MAX,	VI	= 2.7 V	<u></u>			50	μA
46	Low-level input current	V _{CC} = MAX,	VI	= 0.5 V				-2	mA .
los	Short-circuit output current §	V _{CC} = MAX			•••••	-40		-100	mA
		V _{CC} = MAX,	All	inputs at 4.5 V,		1	55	85	~ ^
lcc	Supply current	All outputs ope	n			1	55	60	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SN54S251 SN74S251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 – DECEMBER 1972 – REVISED MARCH 1988

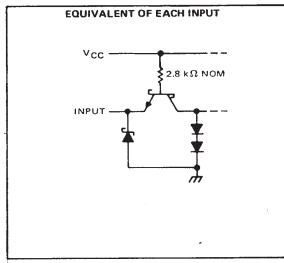
PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN T	YP	MAX	UNIT
^t ዎLH	A, B, or C	Y			12	18	ns
tPHL	(4 levels)	r .	0 - 15 - 5		3	19.5] "*
tΡLΗ	A, B, or C	w			0	15	ns
tPHL.	(3 tevels)		RL = 280 Ω,		9	13.5	1
^t PLH	Any D	Y	See Note 2		8	12	ns
^t PHL		'			8	12	
^t PLH	Any D	w		4	.5	7	ns
tPHL.				4	.5	7	
^t PZH	G	Y	CL = 50 pF,		13	19.5	ns
tPZL					14	21] ""
tpzh	G	w	See Note 2		13	19.5	ns
^t PZL		vv	See Note 2		4	21	
^t PHZ	ā	Y	С _L = 5 pF,	ę	.5	8.5	ns
tPLZ	- G		_		9	14	
tPHZ	G	W		5	.5	8.5	ns
tPLZ		W	See NULE 2		9	14	י" ך

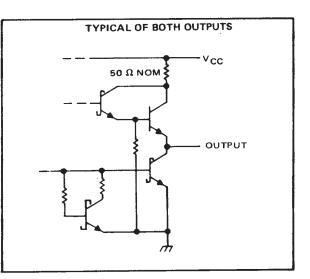
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

[†]tpLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = Output enable time to high level


tpzt = Output enable time to low level


tPHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

TEXAS INSTRUMENTS www.ti.com

18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
7601601EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
7601601FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
7601601FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
80022012A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
80022012A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
8002201EA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
8002201EA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
8002201FA	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI
8002201FA	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI
JM38510/07905BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
JM38510/07905BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
JM38510/30905B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/30905B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/30905BEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30905BEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/30905BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
JM38510/30905BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SN54251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN54251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN54LS251J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN54LS251J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN54S251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN54S251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74251N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74251N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS251D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

WTEXAS INSTRUMENTS www.ti.com

18-Sep-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽
SN74LS251DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS251DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS251DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS251N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS251N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS251NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS251NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS251NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS251NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS251NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS251NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS251NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS251NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S251D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI
SN74S251D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI
SN74S251N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74S251N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74S251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74S251N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SNJ54251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54LS251FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS251FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS251J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LS251J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LS251W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SNJ54LS251W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SNJ54S251FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ54S251FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ54S251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54S251J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54S251W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SNJ54S251W	OBSOLETE	CFP	W	16	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

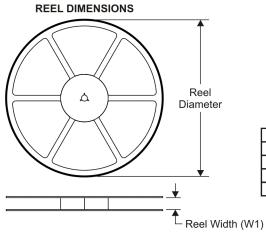
OBSOLETE: TI has discontinued the production of the device.

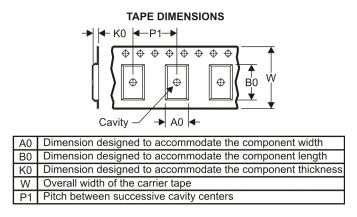
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

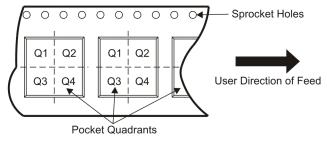
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

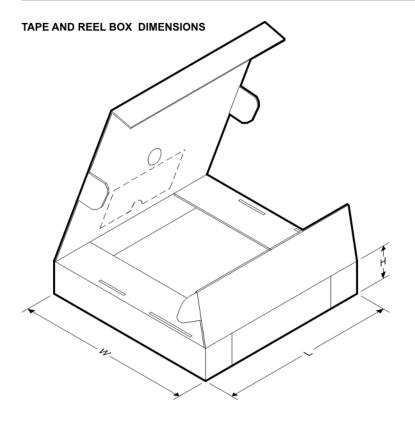

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*A	I dimensions are nominal												
	Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN74LS251DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	SN74LS251NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS251DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS251NSR	SO	NS	16	2000	346.0	346.0	33.0

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

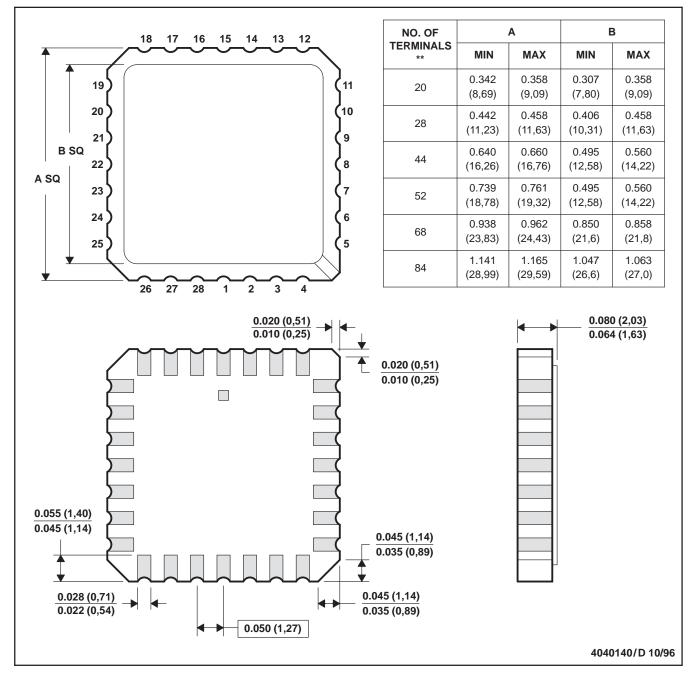
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

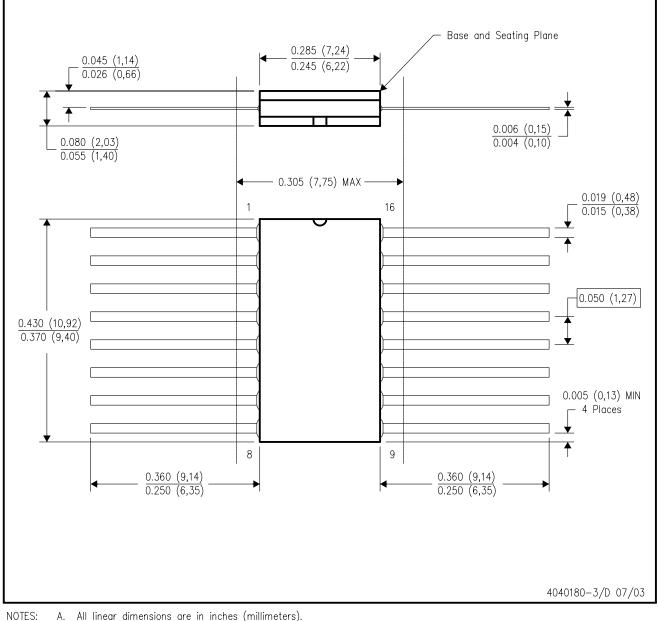
28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

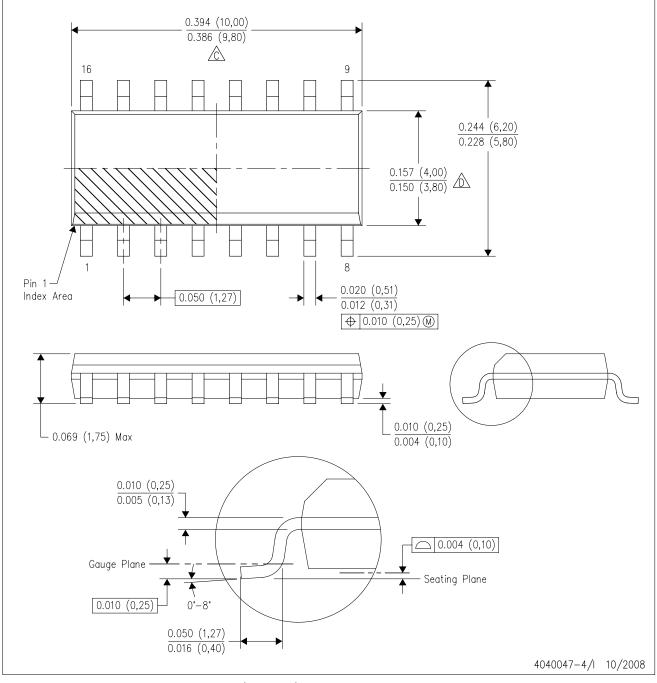


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated